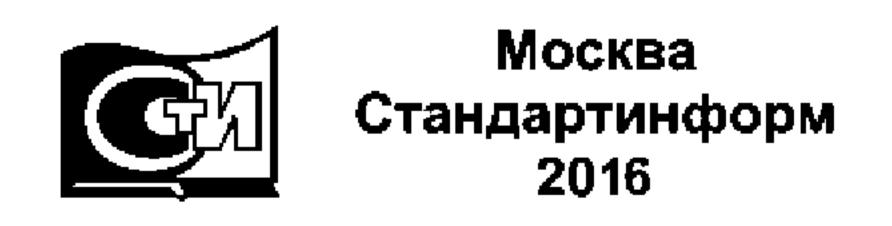
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ


НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСТ Р 5675— 2015

КОМПОЗИТЫ

Метод оценки циклической стабильности текущего напряжения при комнатной температуре поглощающих электрохромных покрытий герметичных стеклопакетов

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Объединением юридических лиц «Союз производителей композитов» совместно с Открытым акционерным обществом «НПО Стеклопластик» и Автономной некоммерческой организацией «Центр нормирования, стандартизации и классификации композитов», на основе аутентичного перевода на русский язык указанного в пункте 4 стандарта, который выполнен ТК 497
- 2 BHECEH Техническим комитетом по стандартизации ТК 497 «Композиты, конструкции и изделия из них»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 24 ноября 2015 г. № 1961-ст
- 4 Настоящий стандарт является модифицированным по отношению к стандарту ACTM E2241—06 «Стандартный метод испытаний для определения вольтамперной устойчивости циклической подачи импульсов при комнатной температуре у светопоглощающих электрохромных покрытий на клееных стеклопакетах строительного назначения» (ASTM E2241—06 «Standard Test Method for Assessing the Current-Voltage Cycling Stability at Room Temperature of Absorptive Electrochromic Coatings on Sealed Insulating Glass Units») путем изменения содержания отдельных структурных элементов, которые выделены вертикальной линией, расположенной на полях этого текста, а также невключения отдельных структурных элементов, ссылок и/или дополнительных элементов.

Оригинальный текст невключенных структурных элементов стандарта АСТМ приведен в дополнительном приложении ДА.

Оригинальный текст измененных структурных элементов примененного стандарта АСТМ приведен в дополнительном приложении ДБ. Отдельные структурные элементы изменены в целях соблюдения норм русского языка и технического стиля изложения, а также в соответствии с требованиями ГОСТ Р 1.5.

Сравнение структуры настоящего стандарта со структурой указанного стандарта АСТМ приведено в дополнительном приложении ДВ

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

КОМПОЗИТЫ

Метод оценки циклической стабильности текущего напряжения при комнатной температуре поглощающих электрохромных покрытий герметичных стеклопакетов

Composites. Method for assessing the current-voltage cycling stability at room temperature of absorptive electrochromic coatings on sealed insulating glass units

Дата введения — 2017—01—01

1 Область применения

Настоящий стандарт распространяется на композиты, представляющие собой герметичные стеклопакеты с многослойными электрохромными покрытиями, состоящие из одного и более электрохромных слоев, помещенных между прозрачными проводящими оксидными слоями, и устанавливает метод оценки циклической стабильности текущего напряжения при комнатной температуре.

Настоящий стандарт не распространяется на стеклопакеты с фотохромными или термохромными покрытиями, а также на стеклопакеты с электрохромными покрытиями, в конструкции которых надслой или подложка выполнены из материалов, отличных от стекла.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

ГОСТ Р 56773—2015 Композиты. Метод ускоренных испытаний на старение электрохромных покрытий герметичных стеклопакетов (ASTM E2141–12 «Стандартный метод испытаний для проведения оценки ресурса светопоглощающих электрохромных покрытий на стеклопакетах клееных строительного назначения», МОО)

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 56773.

4 Сущность метода

Образцы помещают в термошкаф при заданной температуре и влажности и циклически изменяют состояние их электрохромного покрытия (ЭХП) с бесцветного на состояние с установленным цветом и обратно, фиксируя при этом ухудшение свойств образцов.

ΓΟCT P 56759—2015

5 Оборудование

- 5.1 Блок циклического изменения напряжения, обеспечивающий изменение состояния ЭХП с бесцветного состояния до состояния с установленным цветом и обратно.
- 5.2 Спектрофотометр с фотодиодной матрицей, подключенный к компьютеру, обеспечивающий получение данных оптической пропускающей способности в бесцветном состоянии, в состоянии с установленным цветом, а также измерение скорости наполнения цветом и снятия цветности. Дискретность измерения оптической пропускающей способности должна быть не более 0,1 % измеряемой величины, точность ± 0,5 %.
 - 5.3 Цифровой фотоаппарат.
 - 5.4 Видеокамера и видеозаписывающее устройство.
- 5.5 Калиброванные термопары, обеспечивающие измерение с точностью ± 0,1 °C и суммарную погрешность показаний не более 0,3 °C.
- 5.6 Электрические выводы от блока циклического изменения напряжения (см. 5.1) на все стеклопакеты с ЭХП при испытании в термошкафу (см. 5.7).
- 5.7 Термошкаф, оборудованный системой принудительного воздушного нагрева/охлаждения и системой регулировки влажности, обеспечивающий заданную температуру испытания стеклопакетов с ЭХП.

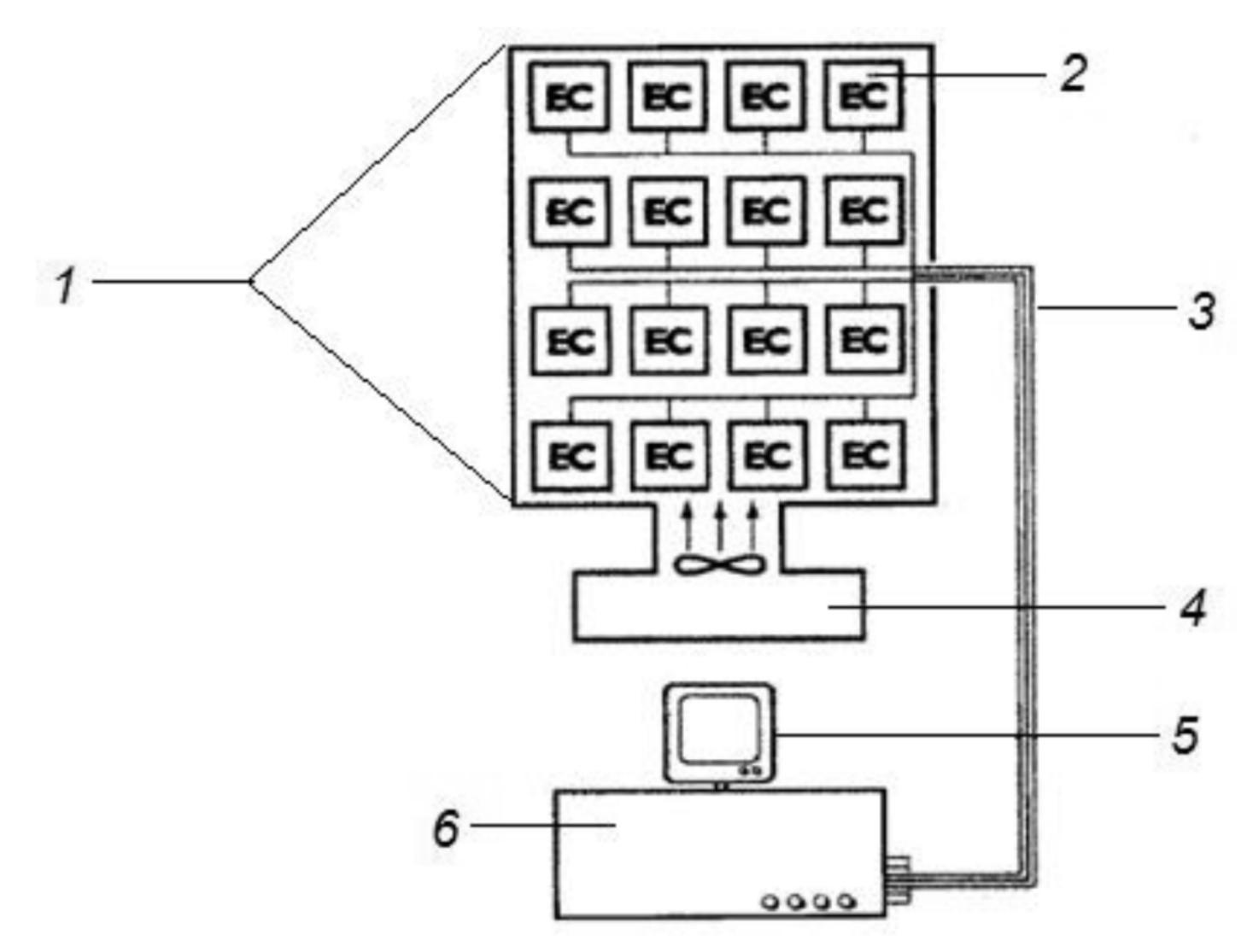
Конструкция термошкафа должна обеспечивать испытания образцов заданного размера, а также возможность подключения спектрофотометра с фотодиодной матрицей (см. 5.2).

Система воздушного нагрева/охлаждения должна поддерживать температуру в диапазоне от минус 40 °C до плюс 95 °C.

Система регулировки влажности должна поддерживать относительную влажность в диапазоне от 5 % до 95 %.

6 Подготовка к проведению испытаний

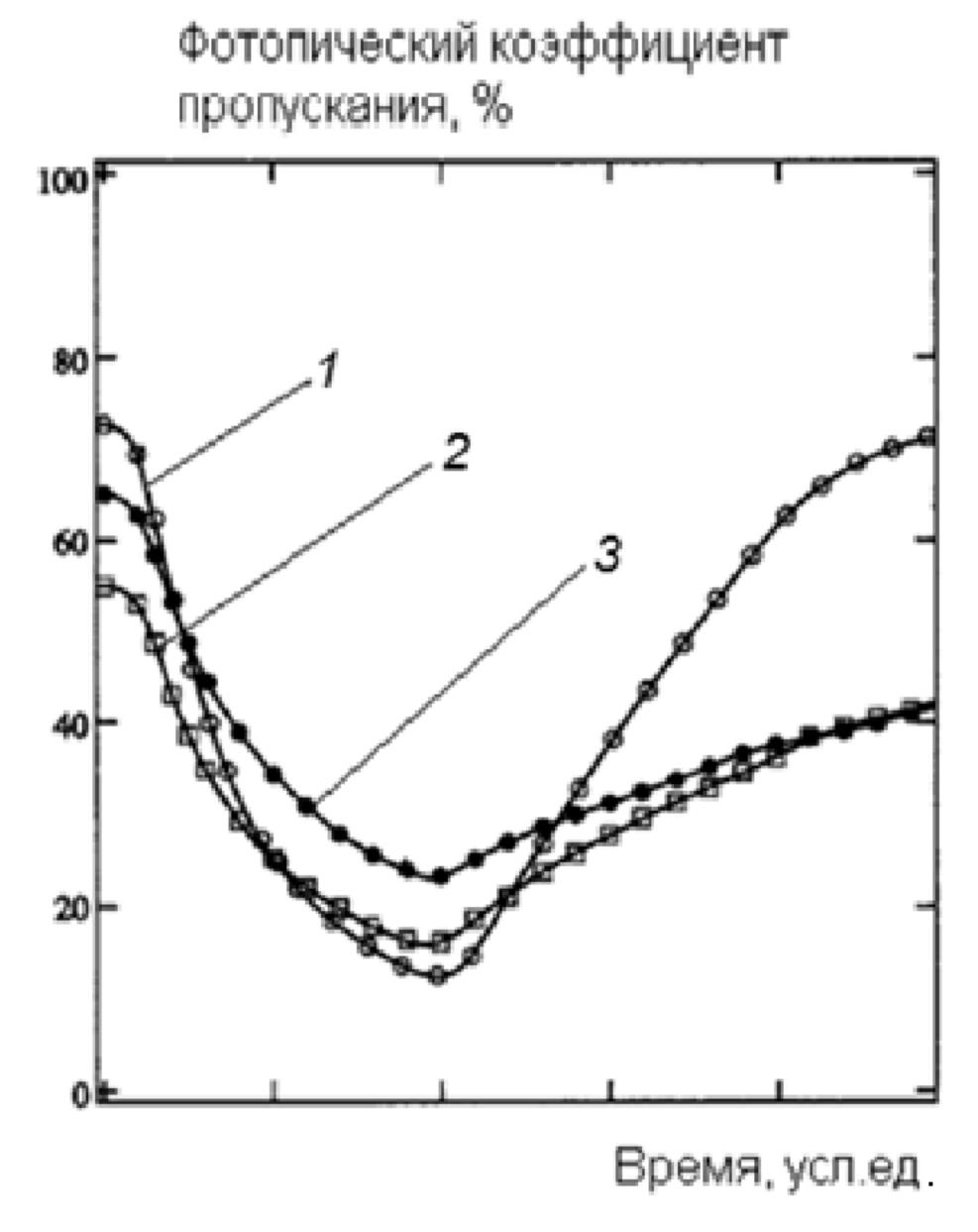
6.1 Для испытаний используют образцы размерами не менее 250 × 250 мм в количестве, установленном в нормативном документе или технической документации на изделие. При отсутствии таких указаний испытывают произвольное количество образцов, но не менее шести.


Рекомендуемый размер образцов для испытаний — 355 × 505 мм.

Примечание— На испытания рекомендуется представлять не менее 10 образцов для замены отбракованных образцов (при необходимости) и/или использования их в качестве контрольных образцов при сравнении.

6.2 Перед проведением испытаний проводят визуальный осмотр образцов и делают фотографии всех явных дефектов или отклонений образцов в состоянии с установленным цветом или в бесцветном состоянии.

7 Проведение испытаний


- 7.1 Измеряют оптическую пропускающую способность по ГОСТ Р 00001.
- 7.2 Метод оценки циклической стабильности текущего напряжения при температуре 22 °C
- 7.2.1 Испытания проводят в термошкафу (см. рисунок 1).

1 — плоскость испытания 1220 × 1830 мм; 2 — стекла с ЭХП; 3 — электрические выводы и кабели термопар; 4 — термошкаф; 5 — компьютер; 6 — многоканальная цифровая автоматизированная система управления и сбора данных

Рисунок 1 — Схема оборудования для проведения испытания (вид сверху)

- 7.2.2 Помещают образцы в термошкаф.
- 7.2.3 Закрепляют на поверхности образцов термопары, а также подключают блок циклического изменения напряжения.
 - 7.2.4 ЭХП образца переводят в бесцветное состояние.
- 7.2.5 Устанавливают и поддерживают в термошкафу температуру (22 ± 2) °C. Начинают циклическое изменение состояния ЭХП. Длительность периода набора и снятия цвета устанавливают таким образом, чтобы изначально получить фотопический коэффициент пропускания K_{ϕ} = 5.
- 7.2.6 В течение первой половины цикла $0.5t_{\text{цикл}}$ к образцу подводят напряжение для перевода в состояние с установленным цветом, в течение второй половины цикла $0.5t_{\text{цикл}}$ к образцу подводят напряжение для перевода в бесцветное состояние. Значение напряжения устанавливают в нормативных документах или технической документации на изделие.
- 7.2.7 После (6000 ± 2000) циклов останавливают испытания и проводят измерение оптической пропускающей способности (см. 7.1), фиксируют изменение оптико-электрических свойств ЭХП. Строят график зависимости фотопического коэффициента пропускания от времени (см. рисунок 2). Проводят визуальный осмотр образцов и фиксируют повреждения ЭХП.

1 — состояние до ускоренного испытания на старение; 2 — состояние после 5000 циклов; 3 — состояние после 10000 циклов

Рисунок 2 — График зависимости фотопической пропускной способности от времени

- 7.2.8 Повторно устанавливают образцы в термошкаф, повторяют процедуры по 7.2.3 7.2.6. Проводят от 4000 до 10000 циклических изменений состояния ЭХП. Останавливают испытания и проводят измерение оптической пропускающей способности. Строят график зависимости фотопического коэффициента пропускания от времени.
- 7.2.9 Повторяют процедуры по 7.2.8, пока не будет проведено 50000 циклических изменений состояния ЭХП и не менее 5000 ч воздействия условий испытания или пока значение фотопического коэффициента пропускания не будет меньше четырех при измерении оптической пропускающей способности по 7.1, в зависимости от того что произойдет раньше. Фиксируют изменение оптико-электрических свойств ЭХП. Проводят визуальный осмотр образцов и фиксируют повреждения ЭХП.
- 7.2.10 Образец считают не прошедшим испытания, если значение фотопического коэффициента пропускания менее четырех, при этом длительность воздействия составляет не менее 5000 ч, но не было проведено 50000 циклов изменения состояния ЭХП, или если коэффициент пропускания в бесцветном состоянии стал менее 50 % изначально измеренного.

П р и м е ч а н и е — В некоторых случаях из-за старения образца при испытании время перевода в состояние с установленным цветом и в бесцветное состояние увеличивается. При жестком соблюдении времени перевода можно получить K_{Φ} менее четырех, однако устройство может оставаться пригодным для сохранения энергии в зданиях. Прежде чем забраковать образец, необходимо увеличить время перевода в состояние с установленным цветом и в бесцветное состояние до получаса или до того времени, которое необходимо для того, чтобы коэффициент пропускной способности изменился до значения, отличающегося не более чем на 0,4 % от пропускной способности в минуту в состоянии с установленным цветом или в бесцветном состоянии соответственно, в зависимости от того, какое состояние наступает за меньший период времени. Если K_{Φ} опять примет значение не более четырех, то элемент считают не удовлетворяющим эксплуатационным характеристикам.

7.3 После окончания испытаний на ускоренное старение проводят осмотр образцов, фиксируют на фотоаппарате все признаки визуально заметных случаев ухудшения свойств.

Образцы, прошедшие испытания, монтируют рядом с контрольным образцом из той же партии, но не подвергавшимся ускоренному старению. При комнатной температуре проводят пять циклов изменения состояния ЭХП и фиксируют с помощью видеокамеры изменение характеристик ЭХП.

8 Обработка результатов

8.1 Изменение в эффективности придания цвета $\Delta\eta$ вычисляют по формуле

$$\Delta \eta(t) = \frac{\log \left(\frac{\tau_{\rm b}}{\tau_{\rm c}}\right)}{\int_{0}^{t_{\rm c}} i(t)dt},\tag{1}$$

где t — период времени измерения, с;

 $au_{
m b}$ — оптическая пропускная способность в бесцветном состоянии, %;

 $\tau_{\rm c}$ — оптическая пропускная способность в состоянии с установленным цветом, %;

i — ток, обусловленный ионной проводимостью, А;

 $t_{\rm c}$ — время перевода в состояние с установленным цветом ЭХП, с.

8.2 Фотопический коэффициент пропускания K_{ϖ} вычисляют по формуле

$$K_{\Phi} = \frac{\tau_{\rm b}}{\tau_{\rm c}} \,, \tag{2}$$

где $\tau_{\rm b}$ — оптическая пропускная способность в бесцветном состоянии, %;

 $\tau_{\rm c}$ — оптическая пропускная способность в состоянии с установленным цветом, %.

Оптическую пропускную способность в бесцветном состоянии $\tau_{\rm b},\,\%,\,$ вычисляют по формуле

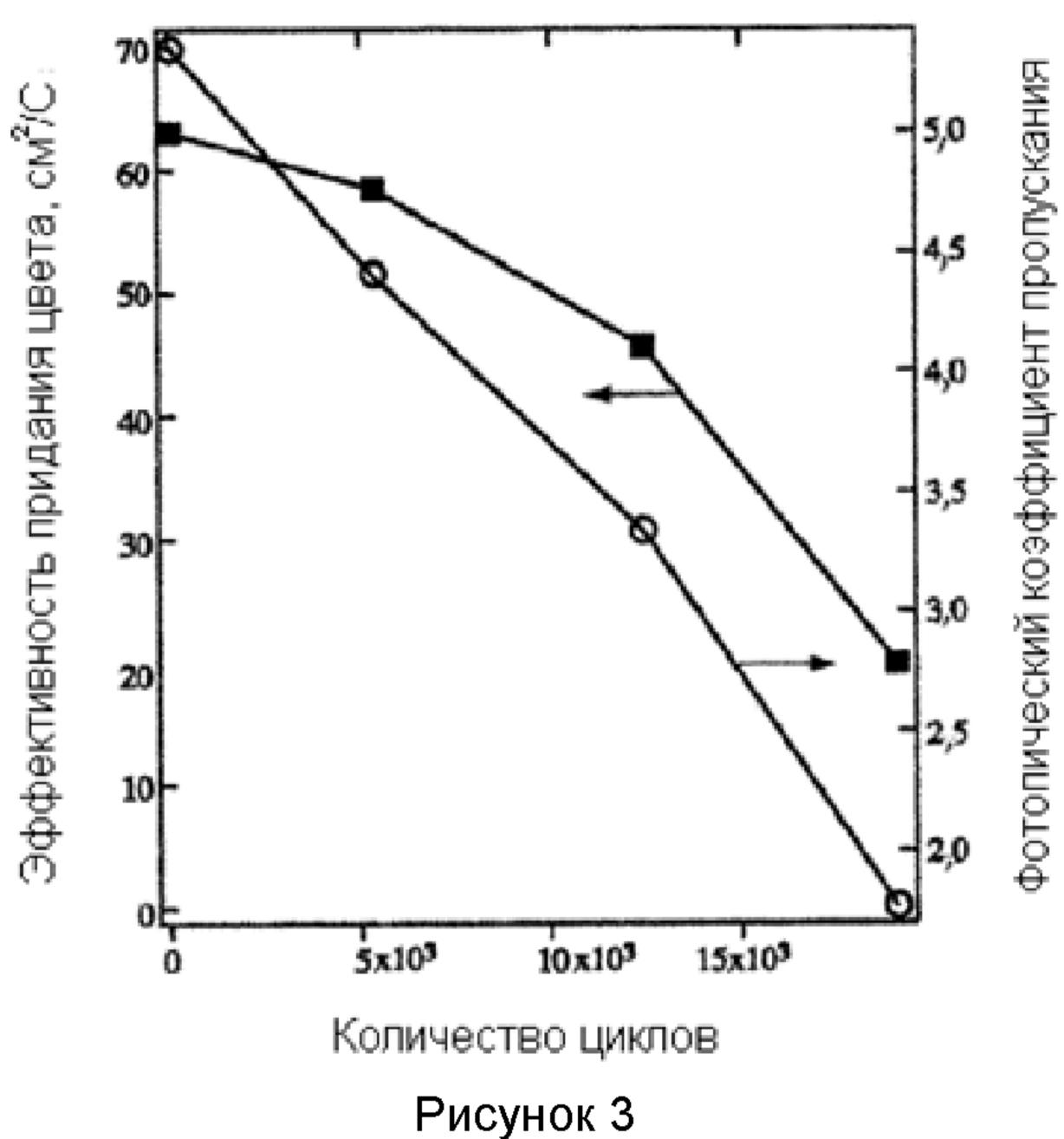
$$\tau_{\rm b}(p) = \frac{\int_{\lambda_{\rm min}}^{\lambda_{\rm max}} \tau_{\rm b}(\lambda) I_{\rm p}(\lambda) d\lambda}{\int_{\lambda}^{\lambda_{\rm max}} I_{\rm p}(\lambda) d\lambda},$$
(3)

где λ_{\max} — длина волны, равная 730 нм;

 λ_{\min} — длина волны, равная 400 нм;

 $I_{\rm p}(\lambda)$ — функция интенсивности свечения.

Оптическую пропускную способность в состоянии с установленным цветом τ_{c} , %, вычисляют по формуле


$$\tau_{c}(p) = \frac{\int_{\lambda_{min}}^{\lambda_{max}} \tau_{c}(\lambda) I_{p}(\lambda) d\lambda}{\int_{\lambda}^{\lambda_{max}} I_{p}(\lambda) d\lambda},$$
(4)

где λ_{\max} — длина волны, равная 730 нм;

 λ_{\min} — длина волны, равная 400 нм;

 $I_{\rm p}(\lambda)$ — функция интенсивности свечения.

8.3 Пример зависимости фотопического коэффициента пропускания от количества циклов изменения состояния ЭХП представлен на рисунке 3.

Результаты испытаний оформляют в виде протокола, который должен содержать:

- ссылку на настоящий стандарт;

9 Протокол испытаний

- описание испытуемого изделия;
- условия проведения ускоренных испытаний;
- количество циклов изменения состояния ЭХП до момента разрушения ЭХП;
- количество часов, прошедших до момента разрушения ЭХП;
- информацию о заметном визуально ухудшении свойств образца. Информацию приводят отдельно для состояния с установленным цветом и бесцветного состояния;
- информацию о заметном на фотографиях ухудшении свойств образца. Информацию приводят отдельно для состояния с установленным цветом и бесцветного состояния;
- информацию об ухудшении свойств образца, зафиксированную с помощью видеоматериалов. Информацию приводят отдельно для состояния с установленным цветом и бесцветного состояния;
 - изменение в эффективности придания цвета;
- фотопический коэффициент пропускания (указывают значения до ускоренного испытания на старение, промежуточные и конечные значения);
 - графики линейновозрастающих характеристик напряжения;
 - изменение пропускающей способности;
 - дату проведения испытания;
 - подписи должностных лиц, проводивших испытания.

Примечание — К протоколу прикладывают фото-видеоматериалы по сравнению каждого испытанно-го образца с контрольным образцом, не подвергавшимся испытаниям.

Приложение ДА (справочное)

Оригинальный текст невключенных структурных элементов

ДА.1

5 Вводная информация

5.1 Согласно проведенным наблюдениям и измерениям была продемонстрирована тенденция к ухудшению свойств с течением времени у некоторых эксплуатационных параметров окон с ЭХП. При подборе материалов, конструкции устройства, а также остеклений для любого случая их применения способность покрытий остекления сохранять свои характеристики с течением времени является признаком долговечности такого остекления.

Свойства изделия сохранять такие эксплуатационные свойства с течением времени, которые удовлетворяют или превосходят установленные требования, являются признаком должного ресурса остекленных покрытий (см. Практические указания E2094). В том случае, когда указанные два показателя являются взаимоувязанными, цель настоящего метода испытаний заключается в определении вольт-амперной устойчивости циклической подачи импульсов при температуре примерно 22 °C, которая имеется на окнах с ЭХП.

- 5.2 Окна с ЭХП обеспечивают ряд важных функций в любой оболочке здания, в т.ч.: сведение к минимуму тепловыделения от энергии солнечного света; возможность приращения энергии солнечного света пассивного типа; регулирование освещенности, подстройка под внешние условия среды эксплуатации; создание более комфортных условий для человека (тепловыделение), формирование безопасности, вентиляции, освещения, а также регулирование блескости; возможность свободы архитектурного решения и (вероятность) улучшения акустики помещения. Некоторые из указанных функций могут со временем терять свои эксплуатационные характеристики. Поступление солнечного тепла через окно с ЭХП снижается по причине двух основных моментов. Энергия из видимого диапазона спектра поглощается окном с ЭХП, которое имеет определенный установленный цвет. Кроме того, инфракрасное излучение либо поглощают материалами окон с ЭХП, либо отражают прозрачные проводящие оксидные пленки, используемые для придания определенного цвета или его потенциального снятия через прочие слои в окне с ЭХП.
- 5.3 Существует возможность, однако сложно спрогнозировать эксплуатационные параметры окон с ЭХП в зависимости от времени, на основе результатов ускоренных испытаний, по тем причинам, которые указаны далее. Пользователи данного документа должны быть осведомлены о подобных ограничениях во время проверки опубликованных результатов эксплуатационных испытаний, а также об их связи с долговечностью (ресурсом).
- 5.3.1 Механизмы, связанные с ухудшением свойств материалов окон с ЭХП или остеклений, или как первого, так и второго, являются сложными. И тем не менее, в некоторых случаях подобные механизмы могут быть установлены и количественно представлены.
- 5.3.2 Внешние факторы, влияющие на эксплуатационные параметры окон с ЭХП, являются многообразными и с трудом могут поддаваться количественному определению. Но в некоторых случаях можно установить применение, факторы внешней среды, а также прочие сведения, которые оказывают свое влияние на параметры функционирования.
- 5.3.3 Поверхности остекления с уже испытанными окнами с ЭХП могут быть отличными от тех, которые планировалось использовать в фактических условиях эксплуатации. В некоторых организациях доступны базы данных о параметрах работы покрытий в условиях эксплуатации, которые возможно сопоставить с результатами, полученными в лабораторных условиях.
- 5.4 Факторы ухудшения свойств (или т.н. «напряжения») в разрезе окон с ЭХП включают в себя: процессы ввода и вывода ионов; температуру; солнечную радиацию (в частности УФ); водяные пары; газы, компоненты состава атмосферного воздуха, а также загрязняющие вещества; тепловое напряжение, например влияние, оказываемое внезапным дождем, а также в течение цикла дневных и годичных температур; напряжения, которые были вызваны электрохимическими процессами внутри многослойного тонкопленочного устройства; град, пыль, а также воздействие ветра; конденсация и испарение влаги; а также случаи рассогласования коэффициентов теплового расширения 2,5. Указанные факторы могут иметь место по отдельности или в своем сочетании и влиять на устойчивость и долговечность окон с ЭХП. По причине предполагаемого наличия в окнах с ЭХП многослойных покрытий на одной из поверхностей в нише двухкамерных или трехкамерных стеклопакетов с заполнением инертным газом в пространстве уплотнения, не должно оказывать влияние на ресурс электрохромных покрытий в стеклопакетах множеством таких факторов, как высокая влажность, газы, которые формируют атмосферный воздух, а также загрязняющие вещества, конденсация и испарение влаги, и кроме того пыль.
- 5.4.1 Чрезвычайно важным моментом для продвижения на рынок, даже на нишевые рынки, окон с ЭХП является установка процедур испытаний, по результатам которых существует возможность прогнозирования ресурса окон с ЭХП, а также возможность удостовериться в этом в условиях фактической их эксплуатации. В целях сокращения количества параметров ускоренных испытаний, которые необходимы для прогнозирования длительной эксплуатационной способности окон с ЭХП, еще не были установлены принятые процедуры и методики по отношению к испытаниям окон с ЭХП.2 И тем не менее, недавно была предложена рациональная основа, которая приводит к сужению числа факторов ухудшения свойств, которые необходимо рассмотреть. Чрезвычайно важным моментом для продвижения на рынок, даже на нишевые рынки, окон с ЭХП является установка

критериев допустимости для испытаний, по результатам которых существует возможность прогнозирования ресурса окон с ЭХП, а также возможность удостовериться в этом, исходя из условий их фактической эксплуатации. По причине отсутствия единообразно принятых процедур или методик, которые были установлены для испытаний окон с ЭХП в режиме реального времени, а также по причине невозможности ожидания заводамиизготовителями и потребителями в течение 20 и более лет для того, чтобы любую конструкцию окна можно было бы оценить на деле в режиме реального времени, то необходимо следовать методикам и процедурам ускоренных испытаний на долговечность (ALT) в целях оценки устойчивости свойств у окон с ЭХП2,5. Среди таких моментов: (а) скоростные, но реалистические испытания в режиме циклической нагрузки «ток-напряжение» (I-V), которыми подчеркиваются электрические свойства; (b) параметры испытаний ALT, которые используют в ходе испытаний на долговечность (ресурс) стандартными организациями; (c) параметры испытаний ALT, которые характеризуют реалистичностью по отношению к использованию окон с ЭХП по назначению при их крупных габаритах, а также (d) способ соотнесения результатов испытаний ALT с испытаниями, проводимыми в режиме реального времени.

Назначением данного метода испытаний является определение вольтамперной устойчивости циклической подачи импульсов при температуре примерно 22 °C у окон с ЭХП габаритными размерами не менее 254×254 мм.

Примечание — Данный метод испытаний можно также применять по отношению к окнам с ЭПХ меньших габаритных размеров для определения вольтамперной устойчивости циклической подачи импульсов при температуре примерно 22°С на устройствах-прототипах. Выбранные параметры испытаний могут предусматривать только средние факторы ускорения.

И тем не менее, количественные данные, представленные ранее в (a)–(c), упоминаются и включают в себя детальное описание процедур, которые применяются в случае испытаний внутри блока для ускоренного испытания на погодостойкость.

ДА.2

12 Дополнительные требования

12.1 Исследование 1999 г. показало большой потенциал для дальнейшего исследования способа выполнения испытаний на долговечность. В ходе изначально предпринятых операций были установлены дополнительные способы улучшения, которые необходимо выполнить. Среди таких способов: (а) применение более высокой температуры на образце, которая составляет, например 85 °C и 107 °C, (b) применение усовершенствованных условий облучения (например, 2 или 3-кратные методы для нормальной солнечной освещенности); (с) оптимизация трапецеидальной эпюры напряжения в целях сведения к минимуму повреждений во время набора и снятия цвета; (d) установление соответствующего рабочего цикла по отношению к значениям напряжения для набора цвета и его снятия; (е) повышение качества измерений изменений пропускающей способности при помощи волоконнооптических кабелей, устраиваемых в большем количестве локаций на каждом окне с ЭХП; а также (f) обеспечение того, чтобы испытательную аппаратуру можно было эксплуатировать в надежном режиме в течение большего срока, чем это необходимо для завершения испытаний на долговечность у окон с ЭХП. На основании данных в пп. (a) и (b) временной период для проведения испытаний сокращают, при этом увеличенная температура и световое излучение оказывают более ускоренное влияние на проявление ухудшения свойств. На основании пунктов (c) и (d) время проведение испытаний увеличивают, но более реалистичным будет моделирование фактических условий эксплуатации. На основании пункта (е) относительно общей неоднородности набора и снятия цвета после любой потери эксплуатационных свойств (их ухудшения) будут представлены и получены более широкие по статистике и в количественной оценке, например, одиночный дефект в момент точечного измерения пропускания значительно рассинхронизирует результаты измерений в части всего ЭХ материала окна. Сравнения, которые доступны на видеоматериалах, содействуют тому, чтобы снизить проявление такой проблемы, но видеоданные носят характер результатов количественного и визуального осмотра. Пункт (f) представляет особую значимость потому, что календарное время для завершения испытаний составляло примерно троекратное значение от фактического времени, требовавшегося для испытаний и характеризации оптико-электрических параметров. Главные проблемы надежности, которые возникают из-за разрушений во время потенциостатныхгальваностатных испытаний, — это всплески напряжения, которые обусловлены помехами, оказываемые на ПЭВМ (вычислитель), а также отсутствие в функционале блока AWU возможности предусмотреть достаточное охлаждение для ксеноновых ламп и камеры. Указанные пункты были в полном своем объеме скорректированы для проведения испытаний в будущем, но предполагается возможность возникновения дополнительных вопросов касательно надежности оборудования как общей проблемы в долговременном проведении испытаний. Вне всякого сомнения, контролируемые испытания окон с ЭХП на период 50000 циклов и не менее 5000 ч длительностью требуют того, чтобы все испытательное оборудование работало безупречно в течение года, в зависимости от периода набора/снятия цвета за один цикл напряжения. Обратная связь с производителями является важным моментом для того, чтобы повысить надежность испытательной аппаратуры, выпускаемой ими.

ДА.3

13 Точность и систематическая погрешность

13.1 Точность. В данной методике испытаний в настоящее время проводят работу над установлением точности по отношению к процедурам.

13.2 Систематическая погрешность. По причине отсутствия принятых контрольных материалов, которые подходят для ее установления в отношении процедур данной методики испытаний, систематическая погрешность не определена.

ДА.4

ПРИЛОЖЕНИЕ

- Х1. Дополнительная информация
- Х1.1 Сокращения, используемые в методике испытаний
- X1.1.1 ALT ускоренное испытание на ресурс (срок службы);
- X1.1.2 AWU блок для ускоренных испытаний на погодоустойчивость;
- X1.1.3 AM масса воздуха;
- Х1.1.4 η КПД (эффективность) придания цвета;
- X1.1.5 I-V вольт-амперная характеристика;
- X1.1.6 DPM цифровые стендовые измерительные приборы;
- X1.1.7 DBT температура по сухому термометру;
- X1.1.8 Окно с ЭХП электрохромное окно;
- X1.1.9 IG теплоизоляционный стеклопакет;
- X1.1.10 IGUs стеклопакет(ы);
- Х1.1.11 ИК инфракрасное (излучение);
- X1.1.12 К_ф коэффициент фотопического пропускания, или К_ф, = t_b/t_c ;
- X1.1.13 т_с оптическая пропускная способность в состоянии набранного цвета;
- X1.1.14 ть— оптическая пропускная способность в обесцвеченном состоянии;
- Х1.1.15 УФ ультрафиолетовое (излучение);
- X1.1.16 UMS система обеспечения единства измерений;
- X1.1.17 V напряжение.
- X1.2 Дополнительный список полезных с точки зрения практики определений касательно терминов, использованных в данном Стандарте
 - X1.2.1 Стандарты ASTM:
 - С1036 Технические условия на листовое стекло;
- E122 Практические указания к отбору размера образца для оценки показателя качества партии или процесса;
 - Е546 Метод испытаний точки образования инея в стеклопакетах клееных строительного назначения;
- E773 Метод испытаний для ускоренных испытаний на погодостойкость стеклопакетов клееных строительного назначения;
 - Е774 Технические условия на классификацию ресурсов стеклопакетов клееных строительного назначения;
 - Е1887 Метод определения запотеваний;
 - Е2189 Метод определения стойкости к запотеванию у стеклопакетов;
 - Е2190 Технические условия на эксплуатационные параметры стеклопакетов, а также их методы оценки;
- G159 Справочные таблицы. Спектральное распределение солнечного излучения при массе воздуха равной 1,5: Прямая стандартная и полусферическая наклонная поверхность 37°
- X1.3 Дополнительные сведения, которые могут быть полезны, касательно определений терминов, используемых в данном стандарте
- X1.3.1 ускоренное испытание на ресурс это протокольный метод, который приводит к тому, что материалы или устройства испытывают на себе ускоренное старение;
- X1.3.2 участок ненормального перегрева— (с т.з. однородности в боковых частях поверхности) это зона, в которой имеется неожиданное повышение температуры;
- X1.3.3 эффективность придания цвета это изменение оптической плотности (OD) на единицу заряда (Q), который предусмотрен в ЭХ-устройстве или материале;
- X1.3.4 слой противоэлектрода материал, имеющийся в окне с ЭХП, который служит в качестве хранилища ионов, которые возможно ввести в или вывести из электрохромного слоя;
- X1.3.5 факторы ухудшения свойств условия, заданные искусственно или естественно, которые оказывают влияние или вызывают работу механизма ухудшения свойств, типа воздействия или режима разрушения;
- X1.3.6 характеризация оптико-электронных (электро) параметров понимается как процесс фиксации изменений оптических характеристик (пропускающей способности, отражающей способности, поглощающей способности и пр.) в окнах с ЭХП, в качестве функции электротехнических записей, вносимых в протоколы испытаний (вольтаж, ампераж);
- X1.3.7 оптико-электронное циклирование электрохимический сайклинг-процесс подачи на окно с ЭХП и сохранения попеременно положительного и отрицательного напряжения на устройстве окна с ЭХП с целью обратимого изменения оптических свойств электрохромного устройства с обесцвеченного состояния на состояние «в цвете»;
- X1.3.8 оптическая плотность затухание в объеме пропускаемого света ввиду воздействия процессов поглощения или отражения в просвечиваемом материале. OD (о.п.) логарифм по основанию 10 величины, обратной пропускающей способности (т): OD = $-\log_{10}(\tau)$.
- X1.3.9 оптический коэффициент фотопического пропускания коэффициент пропускания при обесцвеченном состоянии (т_b) по отношению к коэффициенту пропускания в состоянии «в цвете» (т_c), где оба т_b и т_c являются взвешенными по отношению к кривой относительной спектральной световой эффективности;

- X1.3.10 оптическая пропускающая способность это коэффициент излучаемой энергии, которая распространяется по физическому телу, к общей излучаемой энергии, характерной на физическом теле;
- X1.3.11 спектрофотометр с фотодиодной матрицей это система оптического детектора, которая использует матрицу фотодиодов, соединенных с полупроводниковыми приемниками света в целях облегчения спектроскопических измерений в диапазонах UV-VIS-NIR.
- X1.3.12 трапецеидальная диаграмма напряжений геометрическая форма, которая формируется путем нанесения диаграммы на график зависимости напряжения от времени, которую применяют по отношению к окну с ЭХП с отклонением в сторону в В/с до неизменного постоянного напряжения, а затем с негативным уклоном в В/с с возвратом к нулевому напряжению (см. рисунок 4);
- X1.3.13 спектральная световая эффективность для дневного света относительная реакция глаза человека в его состоянии, адаптированном к свету (дневному свету), на излучение с конкретной длиной волны (от 410 до 720 нм);
- X1.3.14 спектральная пропускающая способность относится к оптической пропускающей способности, которая не учитывает свет с диффузной компонентой.
- X1.4 Применимость данной методики испытаний в последующих этапах оценивают по мере полного завершения анализов результатов испытаний.
- X1.5 Общее количество поставленных образцов должно быть на три позиции больше, чем число, указанное в 7.2, кроме того, образцы должны выступать в качестве контрольных образцов или предусматривать вероятность того, что два из них придут в негодность.
- X1.6 Данная методика испытаний предназначена для моделирования фактических условий эксплуатации электрохромных покрытий в любом стеклопакете.
 - Х1.7 Испытания проводят параллельно либо по отдельности.

Приложение ДБ (справочное)

Оригинальный текст модифицированных структурных элементов

ДБ.1

1 Область применения

- 1.1 Данный метод испытаний, который приведен в настоящем стандарте, является способом для проведения испытаний на ускоренное старение, а также способом контроля эксплуатационных параметров электрохромных окон (далее окна с ЭХП). Если рассматривать поперечные сечения типовых электрохромных окон, то такие устройства имеют от трех до пяти слоев покрытий, в состав которых входят от одного до трех активных слоя, помещенные между двумя прозрачными проводящими электродами (ТСЕ, см. раздел 3). См. примеры поперечных разрезов в «Evaluation Criteria and Test Methods for Electrochromic Windows» (касательно сокращений, используемых в настоящем стандарте, см. приложение X1, раздел X1.1).
- 1.2 Данную методику испытаний применяют только по отношению к слоистым (один и более слой активных покрытий между TCE) светопоглощающим электрохромным покрытиям, устраиваемым на стеклопакетах клееных строительного назначения (IG), которые изготовляют для оконных стекол (как надслой, так и подложка), предназначенных для использования в зданиях, например, в остекленных дверях, в окнах, в световых фонарях, а также в системах внешних стен. Подобные слои конструкций, используемые для электрохимического изменения оптических свойств, могут состоять из органических или неорганических веществ, которые имеются между надслоем и подложкой.
- 1.3 Используемые в данной методике испытаний электрохромные покрытия последовательно подвергают (см. методику испытаний У2141) солнечной радиации и задействуют для регулирования величины радиации по поглощению и отражению, и по этой причине для ограничения солнечного тепловыделения, а также объема солнечной радиации, который передается в здание.
- 1.4 Данный метод испытаний не применим по отношению к иным цветообразующим устройствам, например к фотохромным и термохромным.
- 1.5 Данный метод испытаний не применяют по отношению к электрохромным окнам, конструкция которых выполнена из материалов надслоя или подложки, отличных от стекла.
- 1.6 Метод испытаний, приведенный в настоящем документе в качестве ссылочного, является лабораторным методом испытаний, такие испытания проводят в установленных для лабораторий условиях. Испытание предназначено для моделирования, и с некоторой вероятностью, также для ускорения фактической продолжительности эксплуатации электрохромных окон. Для прогнозирования параметров функционирования в разрезе продолжительности эксплуатации изделий использовать результаты подобного испытания невозможно, если не проводились испытания для проверки фактической продолжительности эксплуатационного ресурса, а также соответствующие анализы для того, чтобы продемонстрировать возможность способа прогнозирования параметров функционирования, исходя из ускоренных испытаний на старение.
 - 1.7 Значения, указанные в метрических единицах (единицах СИ), рассматривают в качестве стандартных.
- 1.8 Данный стандарт не предполагает освещения всех положений касательно безопасности, если таковые имеются, которые сопряжены с его использованием. Организация мероприятий по обеспечению надлежащей безопасности и гигиены труда и определение применимости нормативных ограничений перед использованием данного стандарта является ответственностью пользователя данного стандарта

Примечание — Аналогичные стандарты ИСО отсутствуют.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ Р 1.5 (пункт 3.1) и ГОСТ 1.5 (подраздел 3.7).

ДБ.2

2 Ссылочная документация

- 2.1 Стандарты АСТМ:
- 2.1.1 Касательно сведений о дополняющих данный документ стандартах, которые могут быть полезными на практике, см. приложение X1, раздел X1.2.
 - С168 Термоизоляция. Термины;
- С1199 Методика испытаний для определения коэффициента теплового пропускания в установившемся режиме, применяемого для размещения систем светопроемов, при помощи методики теплоизолированных камер;
- E632 Практические указания к подготовке проведения испытаний на ускоренное старение для облегчения прогнозирования ресурсов составных элементов зданий и их материалов;
- E903 Методика определения поглощающей способности солнечного излучения, отражающей способности и пропускающей способности у материалов при помощи шаровых фотометров (изъят в 2005 г.);

E1423 Практические указания для определения коэффициента теплового пропускания в установившемся режиме, применяемого для размещения систем светопроемов;

E2094 Практические указания для определения ресурса цветообразующих покрытий остекленных окон (изъят в 2011 г.);

E2141Стандартная методика испытаний для проведения оценки ресурса светопоглощающих электрохромных покрытий на стеклопакетах клееных строительного назначения;

G113Испытания на воздействие естественных и антропогенных атмосферных условий на неметаллы. Термины.

2.2 Стандарт Канады:

CAN/CGSB 12.8. Стеклопакеты.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ Р 1.5 (пункт 3.6), ГОСТ Р 1.7 (подпункт 7.6.5) и ГОСТ 1.5 (подраздел 3.8).

ДБ.3

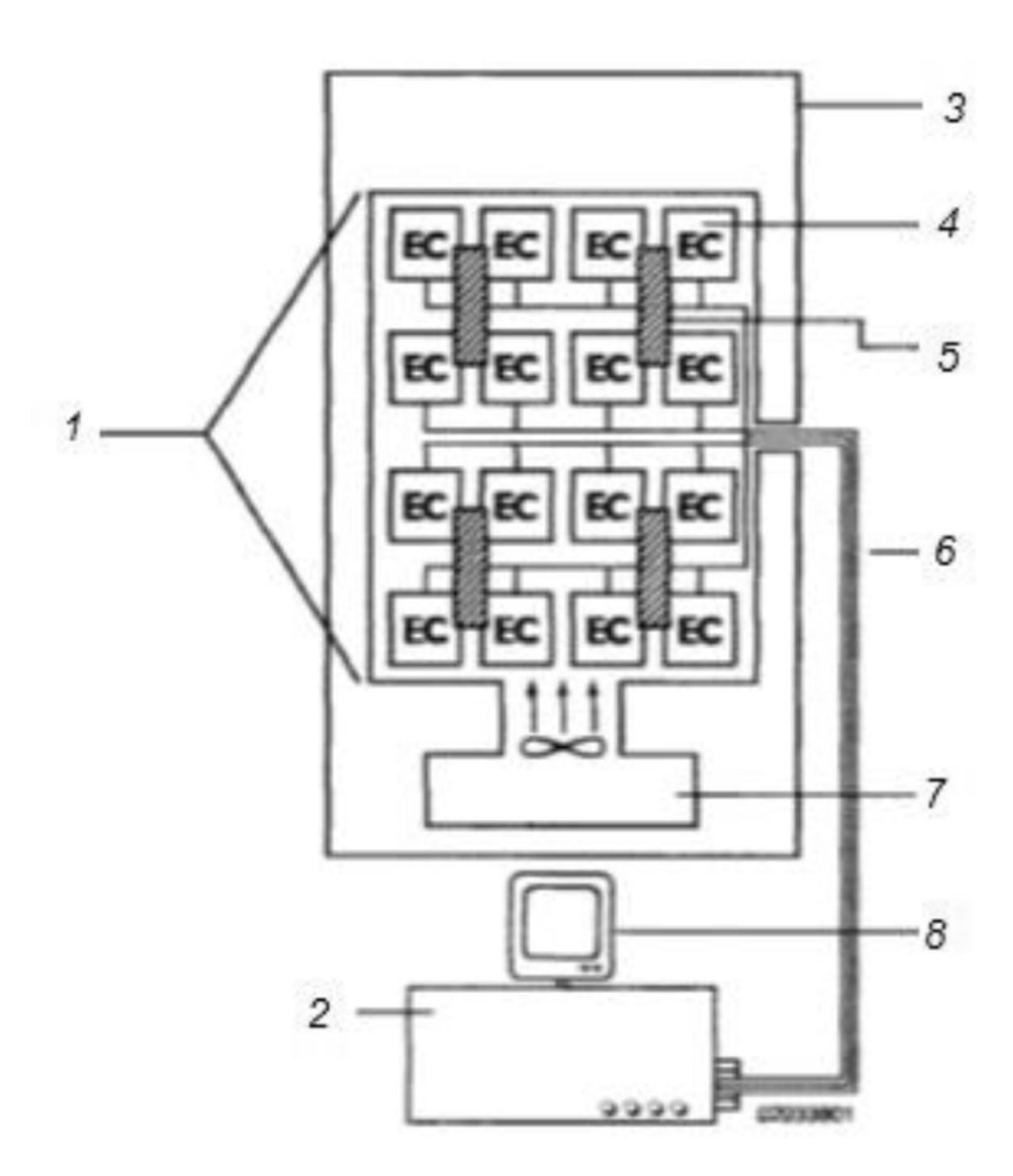
3 Терминология

- 3.1 Определения. Для получения сведений, объясняющих общие термины, см. раздел «Терминология» в С168, Практических указаниях Е632, а также в G113.
 - 3.2 Определения терминов, используемых в настоящем стандарте:
- 3.2.1 ускоренное испытание на старение испытание на старение, при котором темп ухудшения свойств составных частей здания или его материалов намеренно убыстряют по сравнению со скоростью старения в фактических условиях эксплуатации;
- 3.2.2 выцветание признак, имеющийся у окна с ЭХП, когда в его электрохромном слое уже отсутствуют ионы или по факту вывода ионов (или ввода в зависимости от типа материала) из электрохромного(ых) слоя(ев), а также в соответствующих случаях это максимальное количество ионов, которые возвращают в слой противоэлектрода для восстановления фотопического оптического пропускания определенного спектра в выцветшем состоянии (ты), исходя из того состояния, которое имеет покрытие с установленным цветом (тс) согласно фотопическому оптическому пропусканию определенного спектра;
- 3.2.3 состояние с установленным цветом признак, имеющийся у окна с ЭХП, после ввода ионов (или их вывода в зависимости от типа материала) в слой электрохромного покрытия, а также в соответствующих случаях, если они выводятся с поверхности слоя противоэлектрода в целях снижения фотопического коэффициента пропускания определенного спектра (при длинах световых волн от 400 до 730 нм) по сравнению с тем коэффициентом, который имеет покрытие при выцветании (ть);
- 3.2.4 долговечность (ресурс) способность сохранения эксплуатационной пригодности изделием, компонентом, узлом или конструкции в течение установленного срока;
- 3.2.5 электрохромное покрытие многослойные материалы, в состав которых входят электрохромные слои, прочие слои, а также прозрачные, светопропускающие оксидные пленки, которые необходимы для изменения оптических свойств покрытия;
- 3.2.6 электрохромный(ые) слой(и) материал(ы), имеющиеся в окнах с ЭХП, благодаря которым изменяются их оптические свойства под действием ввода или вывода ионов, например, Li+ или H+;
- 3.2.7 электрохромное окно (окно с ЭХП) окно, которое включает в себя несколько слоев электрохромных и сопровождающих материалов, которые могут изменять свои оптические свойства под действием смены напряженности электрического поля. Среди таких «переменных» оптических свойств отметим коэффициент пропускания, коэффициент отражения, а также коэффициент поглощения;
- 3.2.8 ион-проводящий слой материал, имеющийся в окне с ЭХП, через который между электрохромным слоем и слоем хранения ионов проходят ионы, а также минимизируется возможность перемещения электронов.
- 3.2.9 слой хранения ионов или слой противоэлектрода материал, имеющийся в окне с ЭХП, который служит в качестве хранилища ионов, которые возможно ввести в электрохромный слой;
- 3.2.10 параметры функционирования (эксплуатационные параметры) коэффициент фотопического пропускания (K_{ϕ}), не менее 5:1 ($K_{\phi} = \tau_b/\tau_c$) между обесцвеченным состоянием (например, τ_b равный от 60 % до 70 %) и состоянием с установленным цветом (например, τ_c равный от 12 % до 14 %); периоды набора цвета и снятия цвета равные нескольким минутам; переключение подаваемого напряжения от 1 до 3 В; память схемы без обратной связи, которая может вмещать в себя данные до нескольких часов, например, в современных окнах с ЭХП, как правило, применяются схемы без обратной связи с памятью от 6 до 24 ч;
- 3.2.11 эксплуатационная пригодность способность строительного изделия, компонента, узла или конструкции выполнять свою(и) функцию(и), на которую он(она)(они) был(а)(и) запроектирован(а)(ы) и создан(а)(ы);
- 3.2.12 ресурс, срок службы для составного элемента здания или материала, является промежутком времени после его установки, в течение которого все его свойства превышают минимально допустимые значения, когда проводят периодический осмотр.
- 3.3 Для получения дополнительных сведений, которые могут быть полезны, об определениях терминов, используемых в данном стандарте, см. приложение X1, раздел X1.3.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ Р 1.5 (пункт 3.7) и ГОСТ 1.5 (подраздел 3.9).

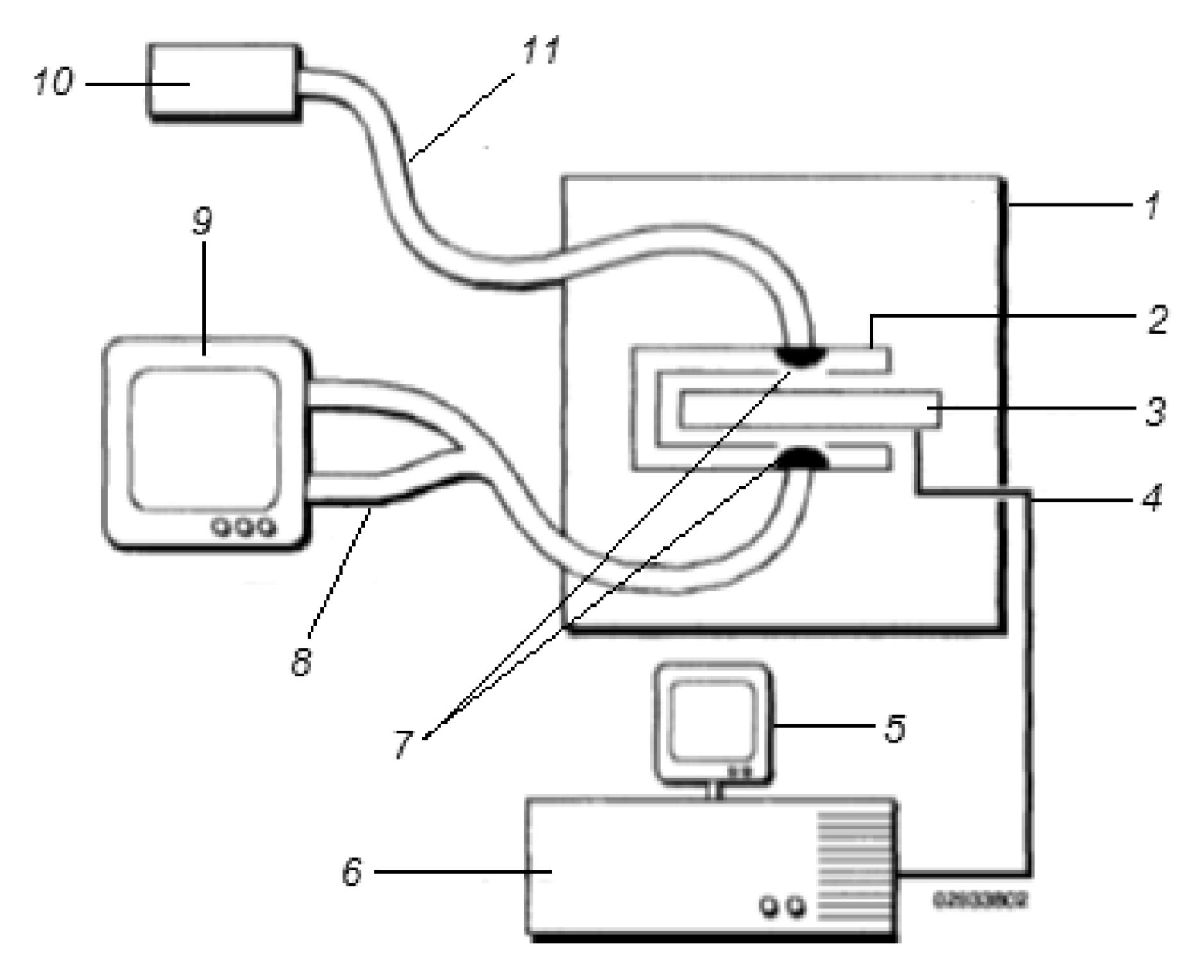
ДБ.4

4 Значение и применение


4.1 Данный метод испытаний предназначен для использования средств определения вольтамперной устойчивости циклической подачи импульсов при температуре около 22 °C, имеющейся на окнах с ЭХП, как указано в 1.2.2 (см. приложение X1, разделы X1.4-X1.7).

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.5).

ДБ.5


6 Аппаратура

- 6.1 Блок цикла изменения напряжения в целях обеспечения заданных циклов напряжения для поочередного и повторного наполнения цветом, снятия цвета на окнах с ЭХП с полностью обесцвеченного до «цветного» состояния и наоборот до отсутствия цвета.
- 6.2 Спектрофотометр с фотодиодной матрицей, имеющий управление от вычислителя, например, для получения и хранения данных на основе оптико-электронных характеристик оптической пропускающей способности в состоянии цвета и в обесцвеченном состоянии, а также замер скорости наполнения цветом и снятия цветности.
- 6.3 Лабораторные условия, пространства внутри лаборатории достаточно для проведения испытаний самого крупного окна с ЭХП, а также данный факт обеспечивает постоянство температуры испытаний окна с ЭХП на уровне около 22 °C. Пространство лаборатории должно позволять использование оборудования, указанного в 6.2, для проведения оптических измерений в течение сохранения температуры окна с ЭХП на уровне около 22 °C.
- 6.4 Лампа накаливания с вольфрамовой нитью, спектр излучения, идущий от источника, должен удовлетворять оптоволоконному освещению матрицы фотодиодов у спектрофотометра, как указано в 6.2.
 - 6.5 Цифровой фотоаппарат.
 - 6.6 Видеокамера и видеозаписывающее устройство.
 - 6.7 Откалиброванные термопары.
- 6.8 Электрические выводы-проводники, с блока, указанного в 6.1, на все окна с ЭХП внутри лаборатории, как указано в 6.3.

1 — плоскость для испытаний с размерами 1220 мм × 1830 мм; 2 — многоканальная цифровая автоматизированная система управления и сбора данных; 3 — корпус камеры облучения (типа XR-260); 4 — электрохромное окно; 5 — ксеноновые лампы; 6 — электрические выводы и камеры термопар; 7 — система принудительного отопления/охлаждения; 8 — компьютер

Рисунок 1 — Вид сверху. Схема принципиальная основных компонентов электрохромных устройств окон в условиях лабораторий, а также системы сбора данных и циклической подачи электроимпульсов с управлением от вычислителя, используемых для ускоренных испытаний на вольт-амперное циклирование при температуре 22 °C

1 — конвекционная печь; 2 — держатель образца; 3 — электрохромное окно; 4 — электрические выводы и камеры термопар; 5 — компьютер; 6 — многоканальная цифровая автоматизированная система управления и сбора данных; 7 — коллимирующая линза; 8 — оптоволоконный кабель-разветвитель; 9 — вычислитель спектрофотометра с фотодиодной матрицей; 10 — лампа накаливания; 11 — оптоволоконный кабель

Примечание — В целях расчета коэффициента фотопического пропускания и регистрации данных об ухудшении свойств в разрезе оптико-электронных параметров измерения производят по окончании циклических испытаний.

Рисунок 2 — Схема принципиальная (основополагающих) элементов оптико-электронной системы измерений, применяемой для регистрации данных спектров излучений диапазона от 300 до 1100 нанометров для циклов наполнения цвета/снятия цвета в электрохромных устройствах окон при комнатной температуре.

Примечания

- 1 Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.6).
- 2 Для проведения и задания более точных условий испытаний добавлено испытательное оборудование (термошкаф).

ДБ.6

7 Образцы для испытаний

7.1 Размер образца для испытаний, его конструкция, а также устройство определяет и указывает пользователь данного стандарта, за исключением того, что размеры образца должны составлять не менее 254 х 254 мм (10 дюймов на 10 дюймов).

Примечание — Необходимо обратить внимание на максимальное требование, предъявляемое к образцам для испытаний, которые имеют размеры (355 \pm 6) мм × (505 \pm 6) мм ((14 \pm 1/4) дюйма на (20 \pm 1/4) дюйма), как, например, у образцов, которые использовались согласно методике испытаний Е2188, а также для случаев применения теплоупроченного или каленого стекла (Спецификация С1048). Касательно описания образцов для испытаний и их подготовки необходимо справляться с данными в разделе 5, методика испытаний Е2188, а также в разделе 12.1 в документе CAN/CGSB 12.8.

- 7.2 Шесть образцов для испытаний, которые расценивают как «аналогичные», вот минимальное количество образцов, которым необходимо пользоваться для определения вольт-амперной устойчивости циклической подачи импульсов при комнатной температуре у конкретного типа исполнения и конструкции окна с ЭХП.5 (см. приложение X1, раздел X1.5).
- 7.3 Завод-изготовитель предоставляет данные для контроля, а также прочую требуемую испытательной лабораторией информацию в целях проведения данного испытания.

Примечание — Параметры для контроля по отношению к окнам с ЭХП являются следующими: значение напряжения или эпюра сил тока, которые предоставляет изготовитель окон с ЭХП, у которых подача

напряжения или тока на ЭХП производят для цикличного набора цвета для обеспечения искомого К $_{\Phi}$, а также для снятия цвета с такого устройства.

7.4 В испытательной лаборатории сохраняют два экземпляра из поставленных единиц изделий, которые будут выступать как контрольные образцы.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.7).

ДБ.7

8 Процедура

8.1 Сводная информация. Выдерживают окно с ЭХП с постоянной температурой около 22 °C в отсутствии света, пока на окнах с ЭХП циклично проводят то набор, то снятие цвета, при этом предусматривать возможность приостановки циклов в течение рабочего режима, в зависимости от стратегии управления, которая продиктована заводом-изготовителем. Температура «испытания» должна быть около 22 °C. Принимают значение преобладающей относительной влажности, которая имеется в лаборатории, т.к. прототипы покрытий из ЭХ-материалов заделываются внутри двухкамерных или трехкамерных стеклопакетов в целях повседневного использования. Измеряют значение пропускающей способности способом, аналогичным методу испытаний Е903.

8.2 Оптико-электронную характеристику окон с ЭХП осуществляют с использованием многоканального потенциостата, который имеет управление от вычислителя, а также спектрофотометром с фотодиодной матрицей. Коэффициент оптического пропускания всех окон с ЭХП изначально замеряют при температуре (около 22 °C), как указано на схеме на рисунке 2. Оптоволоконные кабели прокладывают от источника света — лампы накаливания с вольфрамовой нитью — в держатель образца окна с ЭХП.

Температуру окна с ЭХП устанавливают путем контроля температуры помещения, снимая показания с термопары (или другого устройства или датчика измерения температуры соответствующего типа). Один оптический кабель проводит отраженный свет с лампы накаливания в одну сторону образца; другой — пропущенный свет на спектрометр с фотодиодной матрицей, который подключен к ЭВМ. Оптоволоконные кабеля обвязывают оптически и надлежащим образом центруют с узлами коллимирующих линз, которые подсоединяют к освещающим волокнам и к сборным волокнам. Контрольные спектры применительно к коэффициентам пропускной способности 100 % и 0 % принимать во внимание до начала любого измерения. Далее соблюдают значение напряжений для установки и снятия цвета (стандартно меньше 3 В), как указано заводом-изготовителем окон с ЭХП. В целях сведения к минимуму деструкции, которая вызвана значительными всплесками напряжения, которые имеют место в начале придания цветности или в начале ее снятия, разрешают применение трапецеидально меняющейся разности потенциалов (с линейным приростом — 0,05 В/с) вместо квазисинусоидального напряжения. Типовая эпюра напряжения (В) и соответствующий ей ток (і) нанесены в виде графика, см. рис. З, в виде функции времени. Оптический коэффициент пропускающей способности у образца измеряют в пределах соответствующего спектрального диапазона за последовательные интервалы времени в течение процессов установки цвета и его снятия. Промежуток времени между регистрациями спектров может быть длительностью одна секунда. В типичных экспериментальных условиях испытаний интервал времени с долей от общей продолжительности цикла для регистрации всех спектров должен соответствовать регистрации данных об оптических свойствах каждого окна с ΘX , например, для $t_{\text{цикла}} = t_c + t_b$, то вероятнее всего надлежащим будет являться регистрация спектров в интервале от t_{цикла}/20 до t_{цикла}/60. Типовые спектры пропускания, которые регистрируют в течение времени набора и снятия цвета (за время циклов), приведены на рисунке 4, на котором оптические спектры устройств отражены в виде графика, зависимости длины световой волны. Постоянные времени, применяемые в диаграмме напряжений, определяют путем контролирования времени, необходимого для достижения K_{Φ} . (t_b/t_c) = 5 при λ = 550 нм. Коэффициент фотопического пропускания устройств получают путем объединения спектров в диапазоне длин волн от 400 до 730 нм при помощи спектральной фотопической эффективности $I_p(\lambda)$ (CIE, 1924) в качестве весового множителя (также см. Практические указания Е1423, метод испытаний С1199 и документ CAN/CGSB 12.8).

8.2.1 Трапецеидальную диаграмму напряжений, которая является аналогом диаграмме, используемой при температуре (около 22 °C) также используют для длительных циклических испытаний при температуре (около 22 °C).

Любое окно с ЭХП необходимо поддерживать на уровне его температуры около 22 °C, а также время для набора и снятия цвета определяют в целях получения установленного K_{Φ} , к примеру, K_{Φ} = 5 при длине волны 550 нм. Данные далее можно использовать для программирования многоканального потенциостата с удельными диаграммами напряжений (применительно к каждому типу устройства) в целях проведения циклических испытаний в условиях температур, отобранных во время эксплуатации блока для ускоренных испытаний на погодостой-кость (AWU), как указано в методике испытаний E2141. После циклирования на искомый период времени (к примеру, по окончании от 4000 до 10 000 циклов) на дальнейшем этапе образцы проходят повторную характеризацию их оптико-электронных параметров при температуре около 22 °C в условиях температур диаграммы напряжений (около 22 °C) в ходе процедуры, предваряющей проведение испытаний. Далее значения сравнивают в разрезе их исходных значений, как указано на рисунке 4. Изначальная фотопическая пропускная способность для типового окна с ЭХП указана на рисунке 5 в виде открытых окружностей, а открытые квадраты и заштрихованные кружки указывают на типовую фотопическую пропускную способность окна с ЭХП при 22 °C (72°F) по истечении циклов от 5000 до 10000 в условиях повышенных температур, соответственно.

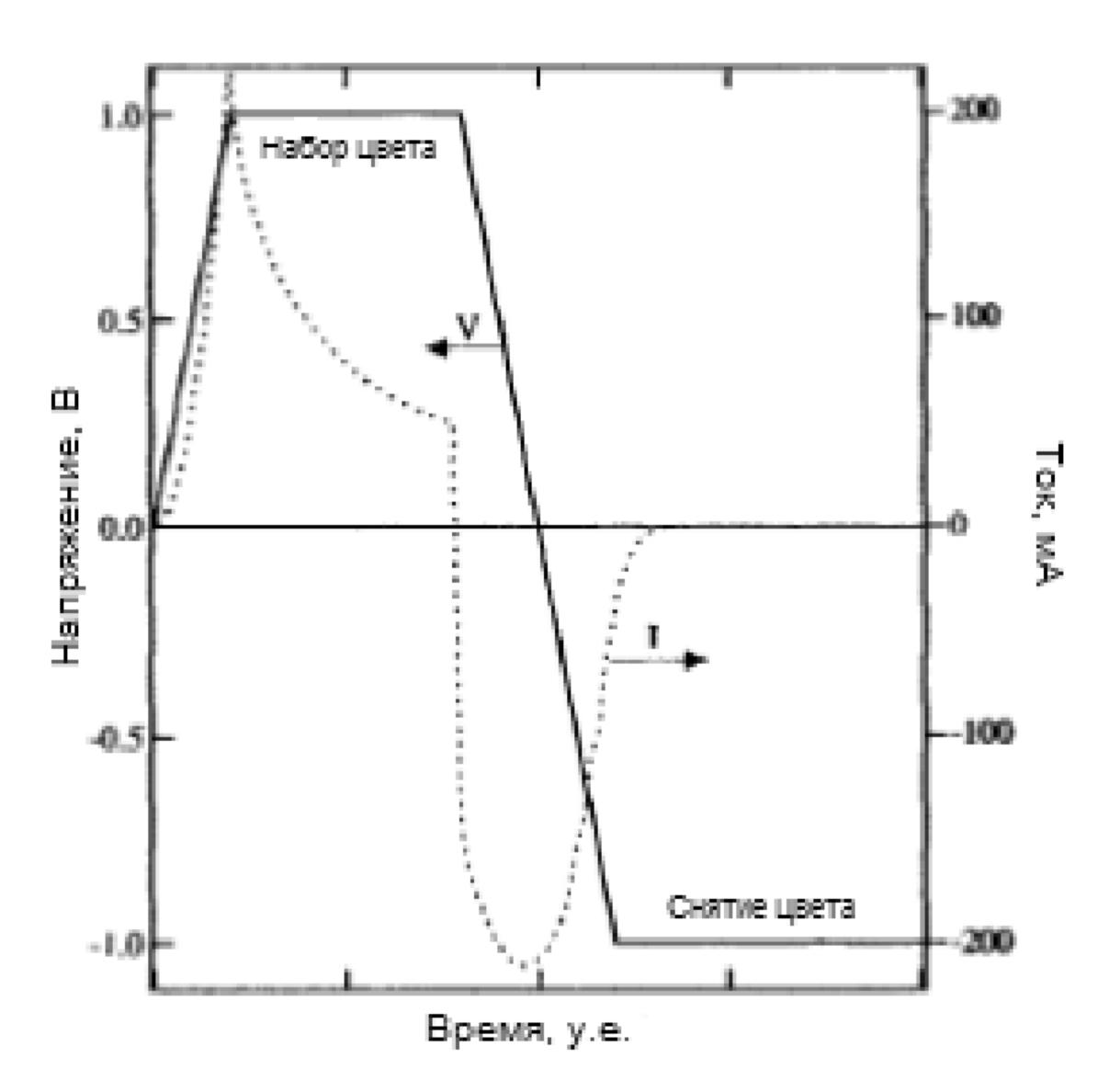


Рисунок 3 — Зависимость напряжения от тока в качестве функции времени в течение набора и снятия цвета у типовых окон с ЭХП

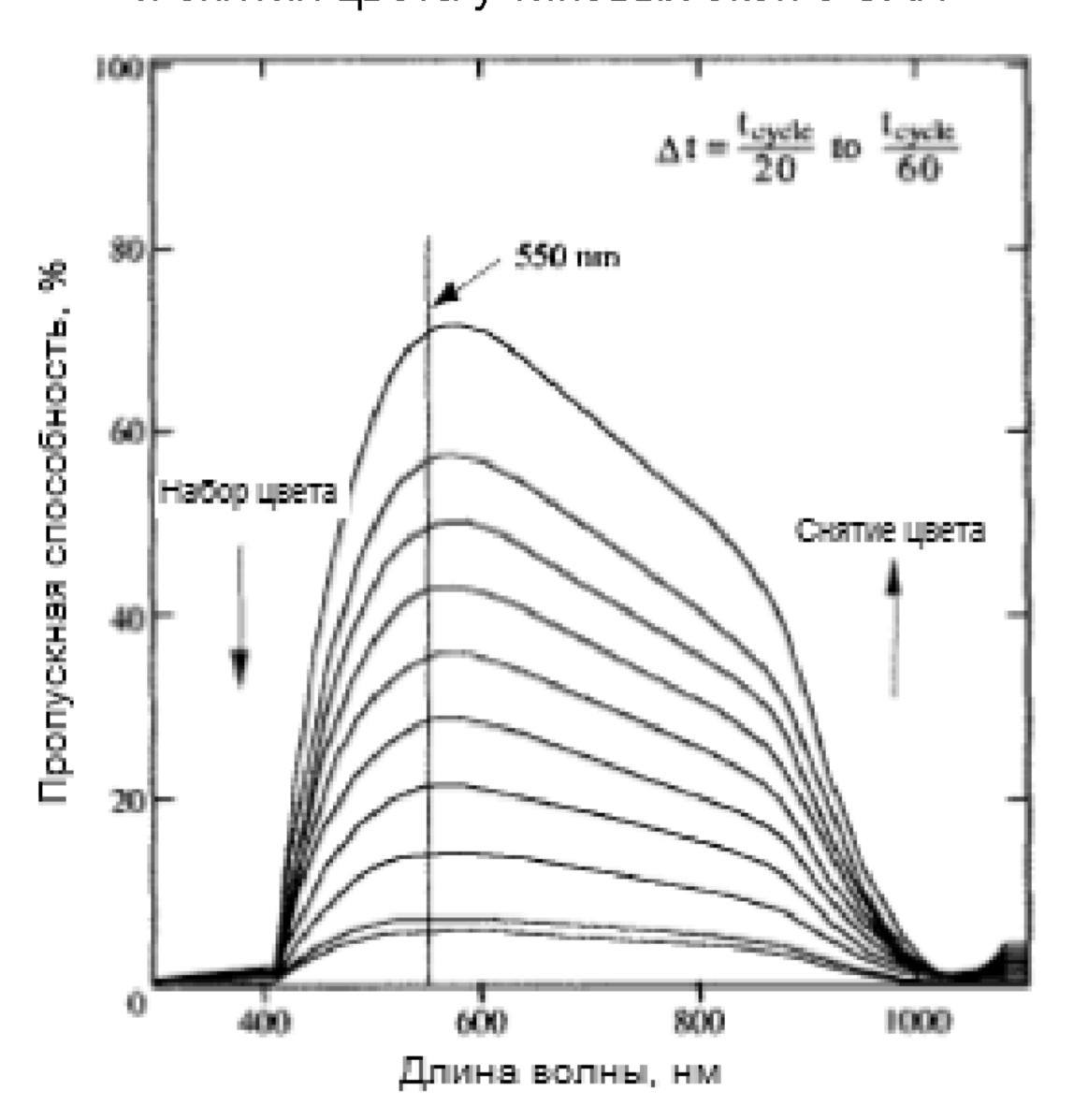


Рисунок 4 — Типовые спектры пропускания

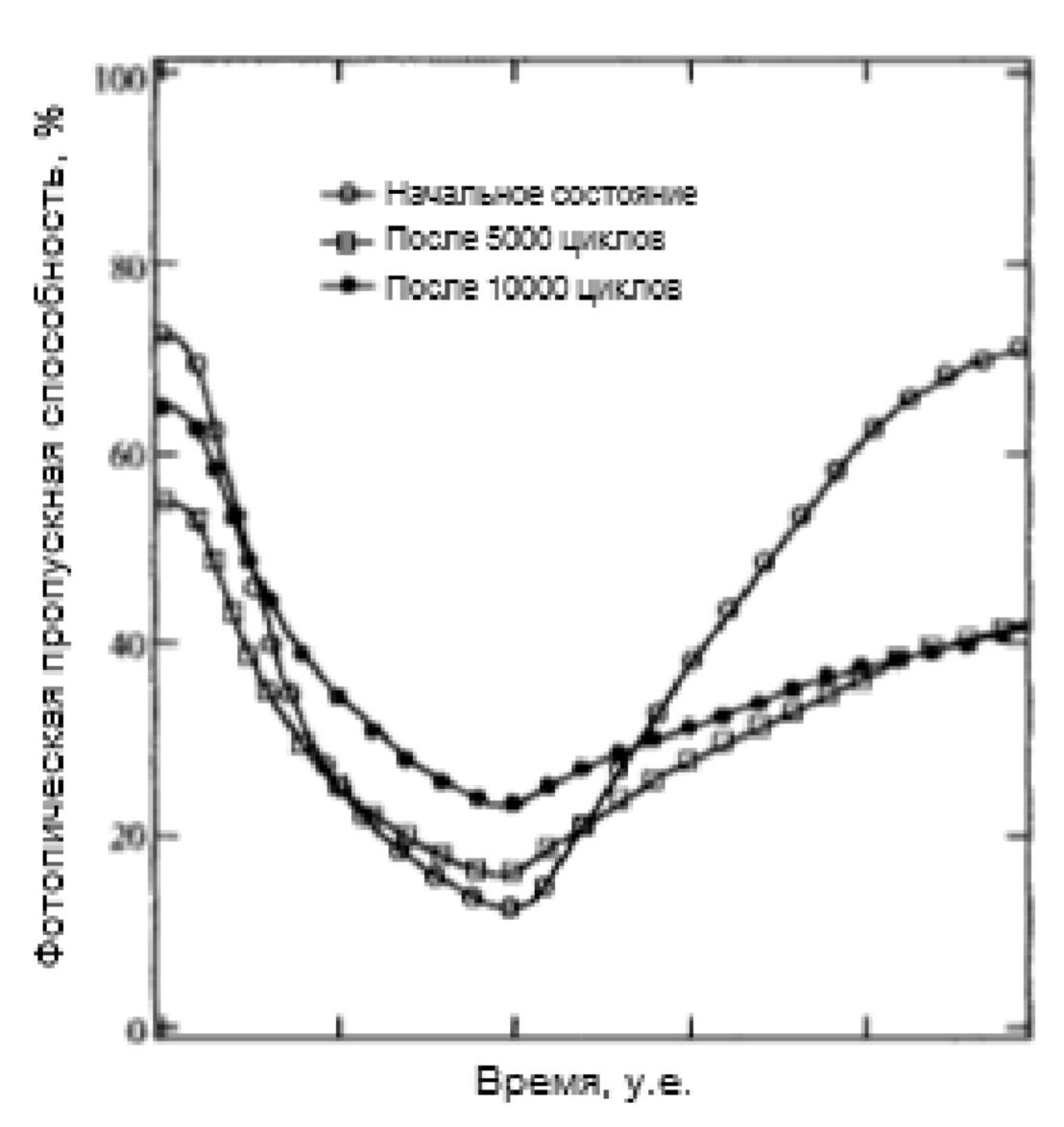


Рисунок 5— Фотопическая пропускная способность как функция времени, измеренного на различных этапах циклических испытаний типового окна с ЭХП

8.3 Лабораторные условия. На рисунке 1 изображена схема принципиальная (вид сверху) основополагающих параметров использования лабораторного пространства применительно к нескольким образцам для испытаний, в том числе компоновка окон с ЭХП на испытательной плоскости размером 1220 мм × 1830 мм (4 фута на 6 футов), а также необходимые соединительные кабели, идущие от окон с ЭХП на системы сбора данных и циклической подачи электроимпульсов с управлением от вычислителя. Предусматривают возможность контроля температуры внутри лаборатории, заносят значения температуры в журнал и протокол испытаний. Контроль набора цвета и его снятия, а также температуры у образцов проводят при помощи цифровой автоматизированной системы управления и сбора данных с использованием кабелей, протянутых через порты, расположенные в задней стенке камеры.

Примечание — Указанная на рисунке 1 компоновка образцов приведена исключительно для иллюстрации, а также допускают прочие варианты расположения образцов, например, штабелирование образцов в вертикальном отношении.

8.4 Монтаж окон с ЭХП в условиях лаборатории — любой завод-изготовитель окон с ЭХП предоставляет сведения о вольтаже набора и снятия цвета для того, чтобы произвести их характеризацию при температуре около 22 °C, а также для эксплуатации выпущенных им окон с ЭХП при температуре около 22 °C. При получении проводят визуальный осмотр окон с ЭХП, сделают фотографии всех явных дефектов или отклонений образцов ЭХ материалов в состоянии набора цвета или в состоянии без цвета, а также вносят записи относительно сделанных наблюдений. Выполняют электрические соединения, например: припаивают соединитель с фрикционной посадкой, штепсельный разъем, коннекторы с замыканием и размыканием или иные соответствующие соединители, подсоединив к ним провода от каждого электрохромного устройства. Сочленяют соединители с коннекторами на кабелях, например, которые имеют длину 9 м (30 футов), подведя кабели к электронным устройствам контроля окон с ЭХП на базе ПЭВМ.

Вносят в протокол испытаний последовательно сделанные измерения оптического коэффициента пропускания применительно к циклам набора/снятия цвета в условиях температуры (около 22 °C), следуя указанным уровням напряжения, которые предоставлены заводом-изготовителем, в целях проверки протоколов электрических испытаний для обеспечения соотношения 5:1 у оптического коэффициента Кф. Проводят сравнение далее полученных данных об оптических и электрических параметрах с теми, что были ранее, в качестве меры ухудшения свойств на каждом окне с ЭХП по окончании периодов длительного циклирования по вольт-амперным характеристикам. Проводят характеризацию образцов по оптическим и электрическим параметрам в лабораторных условиях при температуре около 22°C (см. 8.2), уровень которой является целевой (искомой) температурой испытаний, для установления периодов времени для набора и снятия цвета, которые необходимы для достижения коэффициента К_Ф 5:1 при температуре около 22 °C. При таком измерении устанавливают тот факт, что протоколы значений вольтажа и времени будут использоваться в целях ускоренных испытаний с циклами изменения напряжения на образцах при температуре около 22 °C. К примеру, образцы окна с ЭХП можно далее испытывать, руководствуясь Методикой испытаний Е2141, данные образцы подвергают цикличным испытаниям оптикоэлектронных свойств на долговечность при температуре 85 °C (185°F) на основании протокольных испытаний при 85 °C (185°F), а также для них систематически проводят характеризацию в части изменений коэффициента пропускающей способности в условиях температур около 22 °C на основании данных протокола испытаний при температуре около 22 °C (72°F).

8.4.1 Помещают образцы окон с ЭХП горизонтально на плоскость испытаний, а также присоединяют кабеля, которые идут к электронным приборам, установленным дистанционно, с помощью соединителей, например, соединителей штепсельного типа, быстроразъемного типа, которые указаны выше. Прикрепляют термопары (диаметр 0,13 мм или диаметр 5 мм) на ленте к центральной поверхности образцов (с ориентировкой в сторону ксеноновой газоразрядной лампы как источника света при выполнении последующего испытания согласно методике испытаний E2141) с квадратными элементами размером 8 мм (0,3 дюйма) при помощи алюминиевой ленты толщ. 0,05 мм (0,002 дюйма). Выводы термопар можно отвести проводниками приблизительно на 75 мм (3 дюйма) от центра образца для обеспечения снятия напряжений. Отцентровывают термопары с удлинительными проводниками с соответствующей большей толщиной, которые идут на электронные приборы, расположенные дистанционно, через посредство сверхминиатюрных соединителей.

Примечание — До начала циклических испытаний интенсивно в условиях температур около 22 °С целесообразно провести цикличное определение оптико-электронных параметров на всех образцах окон с ЭХП при температуре около 22 °С в обеспечение проверки целостности электронной системы управления и сбора данных, а также для проверки сплошности электрических соединений и соединений с термопарами.

8.5 Цикл изменения напряжения, который проводят на окнах с ЭХП при температуре около 22 °С. Программируют циклы изменения напряжения для определения оптико-электронных параметров электрохромных устройств с целью периодической приостановки после проведения предварительно установленного количества циклов набора и снятия цветности; как правило, под этим числом понимают (6000 ± 2000) циклов для испытаний окон с ЭХП. После окончания первой приостановки разъединяют термопару и выводы электропроводников, идущих к образцу, от системы кабельной разводки, снимают образцы, проводят повторное измерение оптической пропускающей способности при температуре около 22 °С. Проводят визуальный осмотр образцов окон с ЭХП и фотографируют все очевидные случаи ухудшения свойств покрытия с помощью цифрового фотоаппарата. Отмечают и фиксируют в протоколе испытаний все визуально заметные и очевидные случаи ухудшения свойств покрытия образцов, когда они находятся в состоянии набранного или снятого цвета. Фиксируют измерения опти-

ческих и электрических свойств, а также прочие сделанные наблюдения, и повторно устанавливают образцы окон с ЭХП в печь в целях проведения последующего ряда циклических испытаний, например, добавочно от 4000 до 10 000 циклов набора и снятия цвета. Повторяют данную процедуру до того момента, пока не будет обеспечено в общей сложности 50000 циклов и не менее 5000 часов или пока не будет получен K_{ϕ} менее четырех в условиях комнатной температуры (около 22 °C), вне зависимости от того, какой из результатов будет более ранним. Продолжительность рабочего цикла должна составлять 50 % в случае применения напряжения для придания цвета или в обесцвеченном состоянии, а также 50 % в случае применения напряжения для придания цвета или в состояние «с цветом». При условии достижения K_{ϕ} менее четырех до количества циклов 50000 и уже выполнено условие длительности воздействия 5000 ч или если измерение показывает на наличие t_{b} менее 50 %, то окна с ЭХП не проходят испытания на долговечность.

Примечания

1 50 % от продолжительности цикла означает то, что напряжение подводится и сохраняется для придания цвета на половину (50 %) общей продолжительности времени цикла. В течение оставшейся половины (50 %) времени цикла подводят и сохраняют напряжение «очистки». По причине того, что $t_{\text{цикла}} = t_c + t_b$, как указано в 8.2, с 50 % продолжительностью рабочего цикла, $t_c = 0,5 \cdot t_{\text{цикла}}$. Подаваемое напряжение для набора и снятия цвета см. в 8.2.

2 По той причине, что окна с ЭХП подвергаются старению во время проведения ускоренного испытания на ресурс (срок службы) (см. 8.5), то периоды набора цвета и обесцвечивания зачастую становятся более длительными (см. рисунок 5). Путем жесткого соблюдения периодов набора и снятия цвета применительно к новому устройству на основе данных полученных от устройства, подвергшегося старению, можно в итоге получить K_{ϕ} менее четырех, однако устройство может оставаться пригодным для сохранения энергии в зданиях. До того момента, когда окно с ЭХП расценивают как не прошедшее испытание, необходимо увеличить периоды набора цвета при снятом цвете до получаса или до того времени, которое требуется для того, чтобы изменился коэффициент пропускной способности до менее чем или приблизительно равного 0,4% от пропускной способности в минуту в состояние «с цветом» или в обесцвеченном состоянии, соответственно, вне зависимости от того, что будет на выходе за меньший период набора или снятия цвета. В случае, если до сих пор получают K_{ϕ} менее четырех, если используют более длительные промежутки времени в целях набора и снятия цвета, то устройство в таком случае не удовлетворяет данному критерию, предъявляемому к его эксплуатационным характеристикам.

8.6 Документирование видеосъемкой. После проведения комплекса окончательного циклирования, как указано в 8.5, фиксируют динамические характеристики окон с ЭХП при температуре около 22 °C. Монтируют все окна с ЭХП, которые подверглись старению, как указано в 8.5, рядом с образцом-свидетелем без старения, взятым из той же партии, что и испытуемые образцы. Фиксируют динамические характеристики применительно к пяти циклам набора и снятия цвета при помощи видеокамеры.

Примечание — Визуальный осмотр однородности необходимо производить, если окно с ЭХП выдерживают при постоянном коэффициенте пропускания. Для установления заданного состояния при конкретном коэффициенте пропускания в целях определения однородности материала ЭХП у окна необходимо запросить у заводов-изготовителей сведения для контроля (вольтаж, значения силы тока, длительности), которые в итоге приведут к получению постоянного коэффициента пропускной способности применительно к электрохромным окнам, в состоянии без цвета или в цвете, а также следует пользоваться такими сведениями для контроля.

8.7 Окончательный осмотр — По окончании завершающего ряда циклических испытаний, как указано в 8.5, проводят окончательный осмотр, фотографируют, а также фиксируют все признаки визуально заметных случаев ухудшения свойств.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.8).

ДБ.8

9 Анализ случаев снижения эксплуатационных свойств

9.1 Эффективность придания цвета. Эффективность придания цвета является полезным параметром в качестве индикатора ухудшения эксплуатационных характеристик. K_{ϕ} типового окна с ЭХП рассчитывают на основании спектров пропускания, например, указанных на рис. 4. Данные коэффициенты приведены на рис. 6 в виде функции количества циклов (см. незаштрихованные квадраты). Изменение в эффективности придания цвета (η) в любой момент времени (t)у окон с ЭХП также определяют на основании упомянутых коэффициентов и заряда (Q), который проходит по окну с ЭХП в ходе процесса набора цвета, в соответствии с указанным в следующем уравнении:

$$\Delta \eta(t) = \frac{\Delta O.D.}{Q} = \frac{\log(\frac{\tau_b}{\tau_c})}{\int_{0}^{t_c} i(t)dt},$$

t — время, с;

i — ток, обусловленный ионной проводимостью, А;

 $au_{\rm c}$ — время перевода в состояние с установленным цветом ЭХП, с.

Типовой тренд для эффективности набора цвета на окне с ЭХП является функцией количества циклов, указанных на рис. 6 в виде кубов. Как К_ф, так и эффективность придания цвета сокращаются по мере завершения циклов, указанных для устройства.

Примечание — Может оказаться сложным оценка эффективности придания цвета в части полупроводниковых приборов, в которых измеряемый ток является суммой ионных и электронных токов, а не только током, обусловленного ионной проводимостью, *i*.

9.2 Коэффициент фотопической пропускающей способности — Расчет данного K_{Φ} проводят на основании данных об оптическом коэффициенте пропускной способности в случаях состояний с набранным и снятым цветом. Данное положение является особенно значимым по причине эффектов интерференции, которые могут искажать фактическое изменение K_{Φ} в случаях, когда используют только одну длину волны. Для расчета коэффициента фотопического пропускания при обесцвечивании, $\tau_b(p)$, можно использовать следующее уравнение:

$$au_{\mathrm{b}}^{\lambda_{\mathrm{max}}}(p) = rac{\int\limits_{\lambda_{\mathrm{min}}}^{\lambda_{\mathrm{min}}} (\lambda) I_{\mathrm{p}}(\lambda) d\lambda}{\int\limits_{\lambda_{\mathrm{min}}}^{\lambda_{\mathrm{max}}} I_{\mathrm{p}}(\lambda) d\lambda},$$

где $\lambda_{\text{max}} = 730$ нм;

 $\lambda_{\min} = 400$ нм;

 $au_{
m b}(\lambda)$ — это пропускающая способность в состоянии без цвета при любой длине волны;

 $I_{\mathrm{p}}(\lambda)$ — это функция фотопической интенсивности.

Аналогичное выражение применяют для определения коэффициента фотопического пропускания при состоянии в цвете, $\tau_c(p)$. Далее находим коэффициент K_{ϕ} согласно простому соотношению $\tau_b(p)/\tau_c(p)$. График (см.рис. 6) K_{ϕ} в зависимости от уже пройденных циклов также является полезным для того, чтобы удостовериться в ухудшении эксплуатационных параметров окон с ЭХП.

9.3 Дополнительные анализы. Значение t_c к конкретному τ_c (p) или t_b по отношению к исходному или максимальному $\tau_b(p)$ может быть также полезным для определения ухудшения параметров функционирования (эксплуатационных параметров). Как правило, окно с ЭХП свидетельствует о больших t_c или t_b , которые являются слишком длительными. Для оценки ухудшения эксплуатационных параметров могут быть нелишним измерения K_{Φ} в различных точках расположения образцов, к примеру, в центре, на углах, а также между центром и краем ЭХ материала окна с ЭХП. Вариации на боковых поверхностях в отношении K_{Φ} также в результате могут иметь старение электрохромных окон. Любой K_{Φ} менее четырех считают недопустимым.

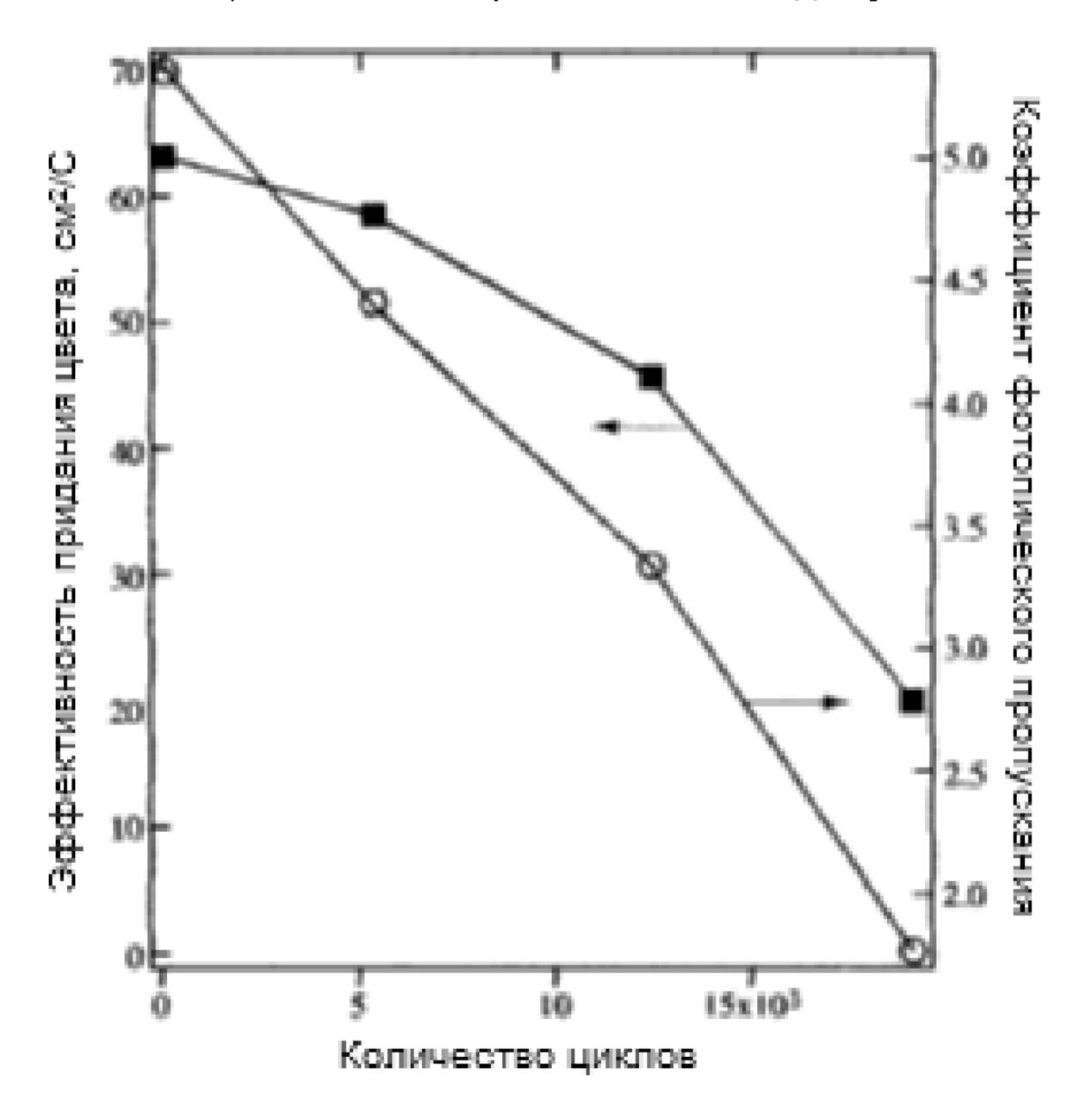


Рисунок 6 — Коэффициент фотопического пропускания и эффективность придания цвета в виде функции количества циклов применительно к типовому окну с ЭХП

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.9).

ДБ.9

10 Наблюдения

- 10.1 Проводят наблюдения и документально фиксируют следующее:
- 10.1.1 разлом образца;
- 10.1.2 разрушение на образце, которое указывают в случае Кф менее 4;
- 10.1.3 ухудшение свойств образца, которое визуально заметно в обесцвеченном состоянии;
- 10.1.4 ухудшение свойств образца, которое визуально заметно в состоянии с набранным цветом;
- 10.1.5 ухудшение свойств образца, которое заметно из фотографий в обесцвеченном состоянии;
- 10.1.6 ухудшение свойств образца, которое заметно из фотографий в состоянии с набранным цветом;
- 10.1.7 ухудшение свойств образца, которое заметно из видеоматериалов в обесцвеченном состоянии; и
- 10.1.8 ухудшение свойств образца, которое заметно из видеоматериалов, отражающими состояние с набранным цветом.

ДБ.10

11. Протокол

- 11.1 Протокол испытаний должен содержать:
- 11.1.1 Полное описание образца(ов) для испытаний, в том числе наблюдения, сделанные на образцах в заводской готовности;
- 11.1.2 Выполненные испытания на образце(ах), а также результаты тех испытаний как до, так и после момента проведения ускоренных испытаний;
 - 11.1.3 Тип проведенных ускоренных испытаний;
 - 11.1.4 Количество динамических циклов, которые были завершены до момента проявления разрушения;
 - 11.1.5 Количество часов, которые прошли перед проявлением разрушения.
- 11.2 Дополнительные сведения, как например, технические схемы, а также видеоматериалы могут также учитываться в составе протокола испытаний.
- 11.3 Подготавливают протокол для каждого комплекта окон с ЭХП по завершении всех комплексов циклов и определении оптической характеризации. В протоколе указывают Кф после каждого комплекса циклов, а также суммарную продолжительность испытаний в часах, а также учитывают указание исходного и конечного значения Кф. В протоколах указывают таблицы с соответствующими значениями для исходных данных характеризации, а также данные по окончании циклов изменения напряжения в оптико-электрическом отношении, как указано в смоделированных данных, приведенных в таблице 1. Данные о коэффициенте фотопического пропускания предоставляют только в заключительном отчете (заключении). Графики линейно-возрастающих характеристик напряжения, которые аналогичны указанным на рисунке 3, изменения коэффициента пропускания в ходе набора и снятия цвета, те, что идентичны указанным на рисунке 4 (но построенные в виде отдельных графиков), пропускание в ходе набора и снятия цвета, как аналогично показано на рисунке 5, а также Кф идентичный данным рис. 6 могут предусматриваться для каждого комплекса окон с ЭХП, которые были подвергнуты испытаниям. Для такого применения указан промежуток времени между графиками спектров пропускания, аналогичных указанным на рисунке 4. Применяют более длительный период набора и снятия цвета, т.е. от 5 до 10 раз больше, чем использованные периоды во время циклических испытаний для характеризации при температуре около 22 °C, в целях установить период, который требуется для обеспечения коэффициентов K_{Φ} = 5 по окончании каждого ряда циклов.
- 11.4 Для каждого поставщика готовят отдельный отчет, в котором указывают все наблюдения, сделанные при осмотре стеклопакетов с ЭХП. Если возможно, сводно представляют информацию о сделанных наблюдениях в общем виде применительно ко всем окнам с ЭХП, а на следующем этапе уже снабжают каждый образец дополнительными комментариями. По окончании последнего циклического испытания и определения характеризации свойств оптических и электрических параметров помещают каждое открытое для воздействия среды окно с ЭХ материалом на одной линии с контрольным образцом (который не был подвергнут воздействию в печи), а также проводят видеофиксацию для того, чтобы установить и отметить видимые влияния на любое ухудшение свойств в течение цикла набора/снятия цвета при помощи данных из протоколов оптико-электрического метода набора и(или) снятия цвета при температуре около 22 °C (72°F). Осторожно запаковать и организовать надлежащее хранение испытанных образцов материала окон с ЭХП, которые подверглись испытаниям на долговечность. Окончательные анализы, которые требуют достаточного количества времени, подразумевают под собой сбор и интеграцию исходных данных об оптико-электронных параметрах циклирования, а также результатов последующих испытаний циклической подачи импульсов в ряд когерентных и независимых заключений.

Таблица 1— Результаты испытаний, которые свидетельствуют об оптико-электронных параметрах, при температуре около 22°C (72°F) до начала и по окончании циклической подачи импульсов при комнатной температуре для определения вольтамперных характеристик

Устройство №	V _c (V)	V _b (V)	t₀/(8)	t _b /8	%tA max	%tA	K _φ A	% т max	% т min	KφA	Циклы при (22 ± 2) °C (70 ± 4°F)	Длительность пре- бывания в условиях испытаний
D-1	W	у	Х	Z	aa	bb	aa/bb	ee	ff	ee/ff	0	ZZZZ
D-1	W	у	Х	Z	СС	dd	cc/dd	gg	hh	gg/hh	V.VVV	YYYY
A = К _ф — фотопический коэффициент про- пускания, % т _ь /% т _с												

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.10).

Приложение ДВ (справочное)

Сопоставление структуры настоящего стандарта со структурой примененного в нем стандарта АСТМ

Таблица ДВ.1

Структура настоящего стандарта	Структура стандарта АСТМ Е2241–06					
1 Область применения (1)	1 Область применения					
2 Нормативные ссылки (2)	2 Нормативные ссылки					
3 Термины и определения (3)	3 Терминология					
4 Сущность метода (4)	4 Значение и применение					
1)	5 Вводная информация					
5 Оборудование (6)	6 Аппаратура					
6 Подготовка к проведению испытаний (7)	7 Образцы для испытаний					
7 Проведение испытаний (8)	8 Процедура					
8 Обработка результатов (9)	9 Анализ случаев снижения эксплуатационных свойств					
9 Протокол испытаний (10 и 11)	10 Наблюдения					
	11 Протокол					
2)	12 Дополнительные требования					
3)	13 Точность и систематическая погрешность					
4)	14 Ключевые слова					
2)	Приложение					
Приложение ДА Оригинальный текст не- включенных структурных элементов						
Приложение ДБ Оригинальный текст моди- фицированных структурных элементов						
Приложение ДВ Сопоставление структуры настоящего стандарта со структурой примененно-го в нем стандарта АСТМ						

Примечание — После заголовков разделов настоящего стандарта приведены в скобках номера аналогичных им разделов стандарта АСТМ.

¹⁾ Данный раздел исключен, т. к. носит поясняющий характер.
2) Данный раздел (приложение) исключен, т. к. носит справочный характер.
3) Данный раздел исключен, т. к. в нем отсутствуют требования к точности, не указаны нормы по погрешности и ее составляющих данного метода испытаний.
⁴⁾ Данный раздел приведен в соответствие с требованиями ГОСТ Р 1.5 (подпункт 5.6.2).

УДК 666.247.2

Ключевые слова: композиты, оценка циклической стабильности, электрохромные покрытия герметичных стеклопакетов

Редактор *В.М. Костылева*Корректор *И.А. Королева*Компьютерная верстка *А.С. Самарина*

Подписано в печать 08.02.2016. Формат 60х84¹/₈. Усл. печ. л. 2,79. Тираж 32 экз. Зак. 48.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru